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ABSTRACT
Simulatability constitutes the cryptographic notion of a se-
cure refinement and has asserted its position as one of the
fundamental concepts of modern cryptography. Although
simulatability carefully captures that a distributed protocol
does not behave any worse than an ideal specification, it
however does not capture any form of liveness guarantees,
i.e., that something good eventually happens in the protocol.

We show how one can extend the notion of simulatability
to comprise liveness guarantees by imposing specific fairness
constraints on the adversary. As the common notion of fair-
ness based on infinite runs and eventual message delivery
is not suited for reasoning about polynomial-time, crypto-
graphic systems, we propose a new definition of fairness that
enforces the delivery of messages after a polynomial number
of steps. We provide strengthened variants of this defini-
tion by granting the protocol parties explicit guarantees on
the maximum delay of messages. The variants thus capture
fairness with explicit timeout signals, and we further distin-
guish between fairness with local timeouts and fairness with
global timeouts.

We compare the resulting notions of fair simulatability,
and provide separating examples that help to classify the
strengths of the definitions and that show that the different
definitions of fairness imply different variants of simulata-
bility.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols

General Terms
Security
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fairness, simulatability, cryptographic protocols, scheduling.
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1. INTRODUCTION
Simulatability constitutes the cryptographic notion of a

secure refinement and has asserted its position as one of the
fundamental concepts of modern cryptography. Although
simulatability carefully captures that a distributed protocol
does not behave any worse than an ideal specification, it
however does not capture any form of liveness guarantees,
i.e., that the protocol ensures that something good eventu-
ally happens. As a consequence, protocols are considered to
be secure even if a single corrupted player can prevent the
protocol from terminating. Clearly, this can lead to unsat-
isfactory situations, especially in protocols in which liveness
aspects are considered crucial, e.g., in an electronic voting
scheme.

One solution to this is to explicitly check protocols for
liveness properties. This approach has the drawback that
such properties have to be formulated individually for each
and every protocol task. Furthermore, it is unclear how
such explicitly formulated properties behave under proto-
col composition. In this paper, we investigate how one can
extend the notion of simulatability itself so that it com-
prises liveness guarantees. The natural solutions as well
as the one we choose in this paper is to restrict the mas-
ter scheduler—the adversary in our case—to fair schedul-
ing. However, the common definition of fairness based on
infinite runs and eventual message delivery is not suited for
reasoning about cryptographic systems whose parties are re-
quired to run in polynomial-time. Hence we first define a
new notion of fairness corresponding to a polynomial-time
variant of the usual fairness definition, i.e., we require that
every message be scheduled within a specific, polynomially
bounded number of steps of the adversary instead of requir-
ing eventual delivery of every message.

The new notion of fairness guarantees protocol partici-
pants that their messages are delivered, but as the specific
polynomial need not be known to the participants, they can-
not decide whether a message has been sent at a particular
time or within a particular time interval. This is in contrast
to practical scenarios where timeouts are usually explicitly
used to avoid (or attenuate) situations where a corrupted
protocol participant can prevent a protocol from terminat-
ing, thereby granting the participants additional capabilities
of continuing with a protocol. It hence seems promising to
extend the new definition of fairness with explicit timeouts
and to compare the strength of the resulting notions in sim-
ulatability proofs. We thus provide strengthened variants of
polynomial-time fairness that we call fairness with timeouts,
which make the guaranteed maximal delay times of the mes-
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sages known to the participants. Knowing the delay times
will allow the protocol participants to distinguish between a
message that is delayed by the network and a message that
was not sent at all. We will distinguish between two variants
of fairness with timeouts: First, there is fairness with local
timeouts, which provides different delay times for different
connections, and each participant learns only the guarantees
of its own connections. Second, there is fairness with global
timeouts, which provides a globally unique delay time for
each connection, and each participant learns this time.

We compare the definitions of fair simulatability result-
ing from the different notions of fairness, and we provide
separating examples that help classify the strengths of the
simulatability definitions. One would be tempted to think
that a protocol that is secure with respect to one definition
will be secure with respect to a definition that provides more
comprehensive fairness guarantees. However, and somewhat
counterintuitively, the examples have shown that this is not
always the case. This stems from the fact that simulata-
bility is defined by comparing a real protocol with an ideal
specification. Hence the more guarantees are given in the
ideal model, the more requirements have to be fulfilled by
the real protocol. In a nutshell, we show that our differ-
ent definitions of fairness imply different definitions of fair
simulatability. The separations shown in this work are not
given by protocols that are secure in one network model and
become insecure in another network model, but by protocol
tasks that can be realized with respect to one scheduling and
cannot in principle be realized with respect to another. More
specifically, we show that a specification of broadcast pro-
tocols can be securely realized in a nontrivial manner with
respect to usual (nonfair) simulatability, but that broadcast
cannot be securely realized with respect to fair simulatabil-
ity. Moreover, we prove that there is a simple and intuitive
protocol task that separates fair simulatability and fair sim-
ulatability with timeouts. Finally, we show that there is a
simple and intuitive protocol task that separates fair simu-
latability with global timeouts and fair simulatability with
local timeouts.

1.1 Related Work
Simulation-based definitions of security were given for the

synchronous model [20, 10] and the asynchronous model [21,
11]. In [4] scheduling with fairness properties is introduced
to prove liveness properties. This scheduling of [4] differs
from the fair scheduling presented here in that guarantees
are given only for service ports, and the adversary can be
stopped by the user to let all waiting messages be delivered,
thus ensuring liveness.

In [2] a construction was introduced that allows synchron-
ous protocols to be represented in an asynchronous network
such that asynchronous security with respect to the new
representation implies security in the synchronous model.
This result holds with respect to the specific representation
used and does not imply a relation between asynchronous
and synchronous security. The work [18] introduces timeout-
fair scheduling (which is called “reliable scheduling” there)
in a model of security specifically designed for this purpose.
For the timeout-fair scheduling it is proved that oblivious
transfer (together with broadcast) is not complete.

Timing issues for non-simulation-based definitions of se-
curity have long been studied in cryptography. Fault toler-
ance has been studied primarily in connection with agree-

ment and consensus problems. A task that is impossible
in a completely asynchronous network, but possible with
synchronous communication, was given in [15]. In [13] this
impossibility result was studied in a network where deliv-
ery is guaranteed, but where the bounds for possible de-
lays are not known to the protocol participants. This net-
work model is adapted to the security model of [21] in this
work by the use of fair schedulers. In [1] an asynchronous
model is used that gives delivery guarantees for messages
sent by non-faulty processors. These guaranteed maximal
delay times are known to all participants, and we adapted
this type of scheduling to the security model of [21] under
the name of globally reliable scheduling. A fair schedul-
ing where the adversary can suppress messages only with a
certain probability is defined in [7], but if one does not con-
sider efficiency this network model can be made reliable by
sending messages multiple times. In more recent work [9] a
machine sends messages to itself to measure time. A similar
approach is used here to implement timers by self-loops and
delivery guarantees.

The study of more general cryptographic protocols in an
asynchronous setting was initiated by [6]. Differences be-
tween asynchronous and synchronous scheduling were shown
in a simulation-based security model. Another work relat-
ing to fairness in the context of simulation-based security
is [16]. However, fairness is denoted there as the property
where no party has an advantage at the end of the com-
putation. The underlying network model is synchronous.
In the context of proactive security, asynchronous networks
are investigated in [8]. In a completely asynchronous model,
proactive security is shown to be impossible, but with some
synchronization it becomes possible, thereby showing an in-
fluence of scheduling on security.

1.2 Overview
In Section 2, we briefly summarize the model of security

used here. Section 3 first motivates and then rigorously de-
fines the notion of a fair scheduler. Section 4 introduces two
variants of fair schedulers. In Section 5, we investigate the
relationships among our new security notions and existing
ones. The paper concludes with Section 6.

2. REACTIVE SIMULATABILITY
Our work is based on the model of reactive simulatabil-

ity [21, 5], which is an asynchronous probabilistic execution
model with distributed scheduling that provides universal
composability properties while including computational as-
pects as needed for cryptography. The model is automata
based, i.e., protocols are executed by interacting machines,
and event-based, i.e., machines react on certain inputs. All
details of the model that are not necessary for understanding
are omitted; they can be found in the original papers.

In particular, we repeat the scheduling model in detail
because it is important for the definitions of fairness. The
specific scheduling aspects needed for cryptographic asyn-
chronous systems are that schedulers are “normal” system
machines so that they schedule with realistic knowledge, and
that different channels may be scheduled by different ma-
chines, e.g., so that local submachines can be represented.

2.1 General System Model
A machine is a probabilistic IO automaton (extended

finite-state machine) in a slightly refined model to allow
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Figure 1: Ports and Buffers

complexity considerations. For these automata, Turing-ma-
chine realizations are defined, and the complexity thereof is
measured in terms of a common security parameter k, given
as the initial work-tape content of every machine. A struc-
ture consists of a set M̂ of connected machines (also called
a collection henceforth) and a subset S of free ports, called
service ports. Each structure is complemented to a config-
uration by a user machine H, modeling the entirety of the
honest users, and an adversary machine A. The machine
H connects only to ports in S , whereas A connects to the
remaining free ports of the structure and may interact with
the users. We denote the set of configurations of a structure
(M̂ ,S) by Conf(M̂ ,S) and the subset of polynomial-time

configurations by Confpoly(M̂ ,S).1

The general scheduling model in [21, 5] gives each con-
nection q (from an out-port q! to an in-port q?) a buffer eq,
and the machine with the corresponding clock out-port q⊳!
can schedule a message there when it makes a transition, cf.
Figure 1 (note that some or all of these ports may belong to
the same machine). Scheduling of machines is done sequen-
tially, so there is exactly one active machine M at any time.
The machine receives messages at its in-ports (representing
incoming network connections) and may output messages at
its out-ports. An output message is appended to a queue of
messages maintained by the buffer associated with the re-
spective out-port. If the active machine has clock out-ports,
it can select the next message to be scheduled by outputting
a number n ≥ 1 to one clock out-port q⊳!. If the buffer eq

contains at least n elements, the n-th message of buffer eq is
delivered to the unique receiving machines that has the port
q?, and the message is removed from the buffer. The unique
receiving machines becomes the next active machine. If M

tries to schedule multiple messages, only one is taken, and if
it schedules none, if the message does not exist, and at the
start of the run, the special master scheduler is scheduled.
In our setting, we assume the adversary to be the master
scheduler. Usually, a connection is clocked by (i.e., the cor-
responding clock out-port is part of) the sender (a delay-less
connection), or by the adversary (an asynchronous connec-
tion). For simplicity, we disallow a machine to clock a con-
nection between two other machines in a structure (which
does not have a natural counterpart in the real world). The
most important use of a clock out-port is to schedule the
oldest (and typically only) message in a buffer, i.e., to out-
put 1 at the respective clock out-port. We then say that the
machine schedules the buffer or the connection.

This means that a closed collection, i.e., a collection whose

1Here and elsewhere we change some notation of [21, 5] from
so-called systems to structures. These systems contain sev-
eral possible structures, derived from an intended structure
with a trust model. Here we can always work with individual
structures.

ports are fully connected, has a well-defined notion of runs,
also called traces or executions. Formally a run is essentially
a sequence of steps, and each step is a tuple of the name of
the active machine in this step and its input, output, and
old and new local state. As the underlying state-transition
functions of the individual machines are probabilistic, we
also get a probability space on the possible runs. We call it
run Ĉ ,k for a collection Ĉ and the security parameter k. One

can restrict a run r to a machine M or a set of machines M̂
by retaining only the steps of these machines; this is called
the view of these machines, and the corresponding random
variables are denoted by view Ĉ ,k(M) and view Ĉ ,k(M̂ ), re-

spectively. For a configuration conf = (M̂ ,S , H, A) we sim-
ply write runconf ,k instead of runM̂∪{H,A},k, and similar for
views.

2.2 Reactive Simulatability
Simulatability constitutes the cryptographic notion of se-

cure implementation and has asserted its position as a fun-
damental concept of modern cryptography. For reactive sys-
tems, it means that whatever might happen to an honest
user in a (typically real) structure (M̂1,S) can also happen

in a (typically more ideal) structure (M̂2,S) given as a speci-
fication: For every user H and every real adversary A1 of the
real structure, there exists an ideal adversary A2 (also called
simulator) such that the views of H are indistinguishable if
H is either run with the real structure and the real adver-
sary, or with the ideal structure and the simulator. This
is illustrated in Figure 2. The most important notion of
indistinguishability is called computational indistinguisha-
bility, which is a well-known cryptographic notion from [22]
that captures that two (families of) random variables can-
not be distinguished in probabilistic polynomial time. Other
common notions of indistinguishability are perfect indistin-
guishability (”≈perf”), which requires the families to be iden-
tical, and statistical indistinguishability (“≈SMALL”), which
requires the statistical distance of the families to be a func-
tion of a class SMALL.

Definition 1 (Reactive Simulatability). For two

structures (M̂1,S) and (M̂2,S) with identical sets of service

ports, and x ∈ {perf,SMALL, poly}, one says (M̂1,S) ≥x
sec

(M̂2,S) ( at least as secure as) iff for every configuration

conf 1 = (M̂1,S , H, A1) ∈ Conf(M̂1,S), there exists a con-

figuration conf 2 = (M̂2, S , H, A2) ∈ Conf(M̂2,S2) (with the
same H) such that viewconf

1
(H) ≈x viewconf

2
(H). In the

case x = poly, H, A1, and A2 have to be polynomial-time.
For x = poly we speak of computational, for x = SMALL

of statistical, and for x = perf of perfect reactive simulata-
bility. We write ≥sec if x is clear from the context and speak
of reactive simulatability. Universal simulatability, written
≥univ

sec , means that A2 does not depend on H (only on M̂1, S ,
and A1).

An essential feature of this definition of simulatability is a
composition theorem [21, 5], that roughly says the following:
Given a structure A (usually a protocol) that is at least as
secure as a structure B (usually some primitive), and given
a protocol XB (having B as a sub-protocol, i.e., using the
primitive), the protocol XA obtained by replacing B by A
in XB is at least as secure as XB . This allows to modularly
design protocols, i.e., one first designs the protocol XB and
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Figure 2: Simulatability example: The two views of
H must be indistinguishable

then proceeds by deriving an implementation for B that is
secure in the sense of reactive simulatability.

3. FAIRNESS IN SIMULATABILITY-BASED
CRYPTOGRAPHIC SYSTEMS

Albeit being a powerful notion for establishing the security
of cryptographic tasks, the notion of reactive simulatability
does not provide any assurance that messages are in fact
delivered (except if immediate delivery of message is desired
and explicitly modeled, which would constitute too strong
an assumption in most cases). More precisely, a protocol
that does not produce any outputs is at least as secure as
any other protocol. In other words, reactive simulatability
does not enforce liveness.

The common solution to achieve liveness is by relying on
a fair scheduler. In our scenarios, this corresponds to re-
quiring the adversary as the master scheduler to eventually
deliver all messages. However, as already stated in the intro-
duction, a definition of fairness that is suitable for reasoning
about cryptographic systems has to take computational re-
strictions into account; in particular, this stands in contrast
to the traditional notion of eventual delivery of messages
which is based on runs of infinite length. Once a suitable
notion of fairness for adversaries is in place, we can then
restrict the simulatability definition to the class of fair ad-
versaries.

3.1 Fair Schedulers
In contrast to the traditional notion of fairness—any mes-

sage sent over the network will eventually arrive—a concise
treatment of fairness in the presence of cryptography im-
poses several additional difficulties.

First, delivery should happen after a polynomial number
of steps. Otherwise, a scheduler may suppress message de-
livery until all protocol machines have halted. We will there-
fore require the existence of a polynomial F that bounds the
number of activations of the scheduler between two clockings
of any connection in the security parameter.

Secondly, we explicitly have to exclude schedulers that
stop working, e.g., because they reach a final state. This
would relieve them of their duty to schedule the network
connections fairly. In particular, this excludes machines that
are polynomially bounded in the traditional sense, i.e., those
that halt after a polynomial number of overall steps.

Since this excludes the use of the usual definition of com-
putational security in our setting, we need a different no-
tion of computational security where the adversaries are
not required to eventually terminate. To allow for a sen-
sible notion of fairness, we therefore consider a refined no-
tion of polynomial-time users and adversaries here, follow-
ing ideas initiated in [19]. For describing this refinement,
let us first review the intuitive idea underlying computa-

tional security. Computational security states that a secu-
rity property is maintained unless the adversary has super-
polynomial power. To capture this idea, it is sufficient to
assume that participants in a communication do not have
immense computational power per time unit. We do not
care whether they may break any hard problem when com-
puting an exponential amount of time, since we only con-
sider events (like breaking the protocol) which happen in a
conceivable future, e.g., not after 1010 years.

In other words, we drop the hard polynomial bound on
the overall number of steps a machine may perform, but
instead we bound the machines only in such a way that in
polynomial prefixes of the users’ view, the overall number of
steps of all machines is polynomial. Consequently, we only
consider polynomial prefixes of the users’ view for security
comparisons, hence it suffices to restrict H to be polynomial-
time in each activation. Moreover, the adversary A must be
kept polynomial in the size of H’s view. Thus, we demand
that A is polynomial in the overall size of all inputs from
H and outputs A gave to H. However, it should be stressed
that neither H nor A actually halts. In particular, A cannot
delay message delivery up to a point in time where H would
not see the consequences of this delivery.

Such users and adversaries are called continuously poly-
nomial. The corresponding security notion, i.e., the restric-
tion of reactive simulatability to continuously polynomial
users and adversaries, behaves well under composition and
is stricter than the original notion of reactive simulatability.
For detailed proofs of these claims and rigorous definitions,
we refer to [19]. Here, it is important that we can use this
notion to sensibly catch what it means for an adversary to
be a fair scheduler.

Definition 2 (Fair Schedulers). Let M be a ma-
chine, p⊳! a clock out-port of M, and F : N0 → N>0 a func-
tion. We say that M F -schedules p⊳! if in every closed col-
lection Ĉ that contains M, and for every sufficiently large
security parameter k ∈ N, M schedules the port p⊳! at least
every F (k)-th activation.

The machine M is F -fair if it is a master scheduler that
never halts and F -schedules every of its clock out-ports. If
F is a polynomial, M is called polynomially fair, or simply
fair. Continuously polynomial users / adversaries which are
fair are called computationally fair users / adversaries.

3.2 Fair Reactive Simulatability
The restriction of reactive simulatability to (computation-

ally) fair users and adversaries now yields the notion of fair
reactive simulatability.

Definition 3 (Fair Reactive Simulatability). Let

(M̂1, S) and (M̂2, S) be structures, and let further x ∈ {perf,

SMALL, poly}. We call (M̂1, S) at least as secure as (M̂2, S)
with respect to fair adversaries (written ≥x ,fair

sec ) iff for every

configuration conf 1 = (M̂1, S, H, A1) with fair adversary A1,

there exists a configuration conf 2 = (M̂1, S, H, A2) with fair
adversary A2 such that viewconf

1
(H) ≈x viewconf

2
(H). In the

case x = poly, A1 and A2 have to be computationally fair,
and H has to be continuously polynomial. Universal fair
simulatability is defined in an analogous manner.

We only briefly note that Definition 3 behaves well under
composition. In addition to the composability proof of the
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original notion of reactive simulatability, we have to investi-
gate aspects of fairness and of continuous polynomial-time.
It has been shown in [19] that polynomially bounded pro-
tocols can be composed without losing continuously poly-
nomial security. The proof was conducted by reducing an
attack on the composed protocol to an attack against a sub-
protocol. Since the subprotocols are secure by assumption,
there is a corresponding ideal adversary A2 which is then
shown to be a good simulator for the attack on the com-
posed protocol. For the definition of fair reactive simulata-
bility, the same proof applies if one additionally shows that
the constructed simulator A2 is fair. This can easily be es-
tablished since the notion of fairness of an adversary does
not depend on the protocol it is run with.

4. VARIANTS OF FAIRNESS WITH TIME-
OUTS

In Section 3 we have elaborated on the benefits of proto-
cols that eventually terminate. Many practical protocols will
however only provide a guarantee of eventual termination if
timeout signals are used appropriately. A mail server trying
to deliver mail will not forever try to talk to another server
but will after some time either try another server or abort
with an error message; a computer that auto-detects print-
ers in a network will, after waiting a given amount of time,
stop and consider the list as complete; an election protocol
may exclude voters that do not vote within a specified time
frame as is common in the conventional election method
using the non-electronic ballot-and-urn method. This ex-
emplifies the need of suitably capturing timeouts as well in
simulatability-based cryptographic systems.

We first discuss what a protocol must have at its disposal
to implement timeouts. First and foremost, there should be
a means of measuring time. Additionally, there should be
some guarantees concerning the time needed for a message
to be delivered. If no such guarantees exist, implementing
a timeout would risk ignoring messages from uncorrupted
parties since their connections might delay messages beyond
the chosen timeout.

When expressing these two concepts, we tried to use as
few additional assumptions as possible; in particular, we did
not want to imply that different machines had synchronous
clocks or even only clocks running at the same speed. We
tried to meet this condition by capturing the possibility of
measuring time by introducing so-called time lines. These
are special designated connections, usually self-loops, that
guarantee that messages on these connections are never de-
livered too fast. Time lines can be used to measure time
since after n clockings of a given time line, at least n times
a given amount of time (say n “seconds”) passed. However,
clocking of time lines can take place much less frequently,
hence only very weak synchronization among different par-
ties can be realized using time lines. In real-world implemen-
tations, time lines are naturally realizable by normal clocks,
and one would simply assume that time lines deliver, e.g.,
one message per second. To capture the notion of time lines
formally in the model, we assign a specific prefix time to the
names of the respective ports, i.e., connections are consid-
ered as time lines if the names of the respective ports start
with time . We call such ports time ports.

We furthermore have to implement guarantees on the max-
imum delay of a given connection. We achieve this by forcing

the adversary to send a number J(k) to some or all par-
ties (before any other machine is activated). The adversary
is then obliged to clock any time line at most J(k) times
between two clockings of any connection. This allows any
party to realize a timeout for any given connection by wait-
ing for J(k) clockings of its time line (i.e., J(k) “seconds”)
before assuming the message to be delivered. To prevent the
adversary from choosing arbitrary large values J(k), we re-
quire J to be a fixed function that is polynomially bounded
in the security parameter. J(k) hence serves as an a priori
and generally known upper bound on the delay of a connec-
tion. Such upper bounds are usually known in practice, at
least if the hardware used in the protocol is known (we may
have to use quite generous bounds to be sure). Similar to
time lines, we assign the names of ports on which J(k) is to
be sent by the adversary a prefix fair . We call such ports
guarantee ports.

4.1 Fairness with Global Timeouts
Combining the notions of time lines and of guaranteed

maximum delay of a connection for all users with the notion
of fairness in the sense of Definition 2 yields the following
variant of fairness, which we call fairness with global time-
outs. We speak of global timeout to distinguish them from
so-called local timeout that provide a guaranteed maximum
delay only for some distinguished connections and as such
constitutes only a local guarantee. We will address local
timeouts in Section 4.2.

Definition 4 (Fair with Global Timeouts). Let
M be a machine and J : N0 → N>0 a function. We say that
M is fair with global timeouts of delay J, if

• The machine M is fair.
• For any clock out-port p⊳! and any time port t⊳! of

M, any closed collection Ĉ containing M, the following
holds (with probability one over the runs of Ĉ ): The
machine M does not schedule the port t⊳! more than
J(k) times without scheduling p⊳! at least once.

• In its first activation, M writes J(k) (in unary repre-
sentation) to all guarantee out-ports. Furthermore, M

never writes anything else to the guarantee out-ports.
A machine M is called fair with global timeouts if it is fair
with global timeouts of delay J for some polynomially boun-
ded J.

Extending the definition of fair reactive simulatability to
comprise global timeouts can be derived as usual by consid-
ering fair adversaries with global timeouts instead of only
fair adversaries. We refer to this notion by ≥gtfair

sec in the
following. It can easily be shown that ≥gtfair

sec retains com-
positionality; the proof can be conducted along the lines of
the original compositionality proof for reactive simulatabil-
ity and its extension to fair adversaries.

- --

?? ?

- --

??

-

adv3 adv2

R3R1 R2

adv2adv1

R2

adv1

R1

(a) (b)

Figure 3: Chains of repeaters

The notion of fair reactive simulatability with global time-
outs allows us to specify and examine protocols using time-
outs. However, it turns out that fair reactive simulatability
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with global timeouts constitutes a rather strict notion. Con-
sider the following construct: Let Ri be machines that take
an input of length k on in?, forward it to out!, and copy it
to the adversary via advi !. Assume three such machines to
be connected to form a protocol M̂1 as in Figure 3 (a) (with
ports renamed accordingly). Compare this protocol with

M̂2 which consists of only two such repeaters as shown in
Figure 3 (b). Intuitively, we would assume three repeaters
to implement two repeaters, at least in a world where exact
time measurements are not possible. However, this is not
the case: Assume that a real adversary schedules the con-
nections between the repeaters as seldom as possible (i.e.,
every J(k)-th time line clocking). Thus an honest user H

with a time line will be able to deduce that a message sent
through the three repeaters has a round trip time of 4J(k)
time line clockings. An ideal adversary A2 now has to guar-
antee the same J(k) to avoid being distinguishable by the
announced J(k) in a trivial manner. So A2 can deliver a
message through the two repeaters no slower than within
3J(k) time-line clockings, which gives distinguishability. So

M̂1 is not as secure as M̂2.
What is the impact of this observation? Any natural spec-

ification of a trusted host will have response times which are
fixed and small multiples of J(k) (e.g., delay of the in-port,
delay of the out-port, and delay of some self loop giving the
adversary time to modify the result, giving 3J(k)). Com-
plex protocols however take a large number of communica-
tion steps, thus having a much larger response time. Then
using similar arguments as with the repeaters, one can see
that such a complex protocol can never be as secure as the
simple trusted host. However, designing the trusted host
to have so much delay that the protocol can still be imple-
mented would seem unnatural, since an ideal trusted host
should abstract from protocol implementation details.

Several solutions come to mind. We could forbid the hon-
est user to have time or guarantee ports and thus prevent
it from noticing the complexity difference between the pro-
tocols. Then however the composition theorem would not
hold any more since its proof makes use of the fact that
protocol parties are combined into the honest user without
changing the behavior of the overall network (this would
now be impossible for parties having time lines and guaran-
tee ports). In fact, the proof does not only become invalid
but counterexamples can easily be constructed.

Alternatively, we could free the simulator from the obli-
gation of fulfilling the guarantees he gave. This seems rea-
sonable at first glance since the added guarantees only allow
the use of timeouts in the real-life protocol. However, when
imposing less restrictions on the simulator than on the ad-
versary, the notion of fair reactive simulatability with global
timeouts would not be transitive any more, and hence the
composition theorem would not be very useful.2

One way to circumvent this is to have a canonical way to
“slow down” ideal connections by inserting special buffers
that need to be clocked a certain, fixed number of times to
deliver. This still allows for reliability in the sense that ideal
messages are delivered after a polynomial number of steps.
However, the concrete reliability is in general not known to

2From “protocol π using primitive X implements primitive
Y,” and “protocol ρ implements primitive X” we could still
conclude “protocol π using protocol ρ implements protocol
π using primitive X. But from that we could not deduce
“protocol π using protocol ρ implements primitive Y.”

the ideal host, since the delaying buffers (or, delay boxes) are
inserted after specification of the ideal host. This method is
explored in detail in Appendix B. Another way of catching
the notion of reliable communication lines is presented in
the next section.

4.2 Fairness with Local Timeouts
The notion of fairness with global timeouts requires the

adversary to give global delivery guarantees, i.e., guaran-
tees that are valid for all of the adversary’s clock out-ports.
We have seen that simulatability problems arise out of the
fact that these guarantees have to be identical in the real
and ideal settings, and we showed that these problems can
be suitably tackled by delaying ideal structures. However,
these problems do not even arise when considering only local
timeouts corresponding to local delivery guarantees. Local
delivery guarantees are scheduling guarantees which relate
only to a specific connection, i.e., a guarantee is only given
to a machine that is sender or receiver of the considered
connection.

Local timeouts can be motivated and justified by the sit-
uation of a very large protocol where it seems plausible to
assume that each protocol participant knows delivery guar-
antees for its local connections. For example, the hardware
used for direct connections might be able to give such guar-
antees. On the other hand, it may seem unrealistic to as-
sume delivery guarantees for connections between two dis-
tant participants to be known when the hardware structure
is inhomogeneous.

We first introduce the notion of locally admissible ma-
chines and collections, which are those machines and collec-
tions that demand only local timeouts.

Definition 5 (Locally Admissible Machines). A
machine M is called locally admissible if the following holds
for all n ∈ Σ+:

• If M has a port fair snd n?, then it also has the out-
port n!, but not the clock out-port n⊳!.

• If M has a port fair rcv n?, then it also has the in-port
n?, but not the clock out-port n⊳!.

A collection M̂ or a structure (M̂, S) is locally admissible if

every machine of M̂ is locally admissible.

Definition 6 (Fair with Local Timeouts). A ma-
chine M is called fair with local timeouts if M is fair, and
if for all clock out-ports p⊳! of M there is a polynomially
bounded function Jp⊳! : N0 → N>0 such that the following
holds.

• For any time port t⊳! and any closed collection Ĉ con-
taining M the following holds with probability one over
the runs of Ĉ : The machine M does not schedule the
port t⊳! more than Jp⊳!(k) times without scheduling p⊳!
at least once.

• In its first activation, A writes Jp⊳!(k) (in unary repre-
sentation) to fair snd p! and fair rcv p! (provided that
these are ports of A).

Based on this definition, fair reactive simulatability with
local timeouts, written ≥locrel

sec , is defined in the usual manner
except that we additionally only allow configurations with
locally admissible honest users. It should be remarked that
the composition theorem still holds with the proof being
conducted as for the previous extensions.
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Similar to the notion of fairness with global timeouts, we
neither require that fair . . . is a port of M nor that M sched-
ules that port (provided that it is a port of M). This is
no weakness of the definition; in the first case, the machine
possessing the port may schedule it, in the second case M is
forced to eventually schedule that port since M is required
to be fair.

Note that our notion of local timeouts allows the simula-
tor to give different delivery guarantees for protocol-internal
connections than the real adversary does. In particular,
three repeaters implement two repeaters (cf. Figure 3) when
considering local (in contrast to global) timeouts.

5. RELATIONS AMONG THE NOTIONS
We finally investigate relations among the described no-

tions and relations to the asynchronous scheduling model.

5.1 Non-Trivial Protocols
With fair reactive simulatability we have a security no-

tion that allows us to capture the idea of protocols that
eventually terminate. It is an interesting question whether
requiring protocols to terminate will lessen the number of
realizable cryptographic tasks. To allow a meaningful com-
parison we need the notion of non-trivial reactive simulata-
bility, because otherwise a trivial protocol which ignores all
inputs would be as secure as every protocol task in the
sense of reactive simulatability. (Note however, that such
a trivial protocol gives no liveness guarantee whatsoever—
this is what we would like to guarantee by demanding mes-
sage delivery from the simulator.) This problem was ad-
dressed in [11] and a definition of non-trivial security was
given in [12]. Adapted to our setting, non-triviality means
that if no party is corrupted and if the trusted host creates
some output, then every party eventually also creates some
output. We can now compare the notions of non-trivial re-
active simulatability and fair reactive simulatability. The
proof argument from [14]—adapted to the case of fair reac-
tive simulatability—shows that no protocol can be as secure
as the task broadcast in the sense of fair reactive simulata-
bility. Yet, for non-trivial reactive simulatability, a trivial
protocol exists that is as secure as broadcast (it is an asyn-
chronous variant of Protocol 1 in [17]).

We conclude without further proof:

Theorem 1. There is no protocol that is as secure as
broadcast in the sense of fair reactive simulatability. How-
ever, there is a protocol that is as secure as broadcast in the
sense of non-trivial reactive simulatability.

5.2 Drawing Profit from Timeouts
In this subsection we give a simple example of a proto-

col that can be securely realized in the sense of fair reac-
tive simulatability with global timeouts, but is impossible
in principle in a security model with only a fair adversary
that does not provide timeouts. The protocol in question
is the one that enables one machine M1 to check whether
another machine M2 got input already.

Let us assume that the machines M1 and M2 communi-
cate with each other through a secure connection. However,
at least M1 may be corrupted. Then, we are looking for
a protocol that guarantees the following. Assume M2 re-
quests to check whether M1 already got input. Then, if M1

indeed got input at that point, M2 shall eventually output

that input. In any case, M2 eventually outputs either M1’s
input or ⊥. The formal definition of the corresponding ideal
protocol RNVP can be found in the full version [3] of this
paper.(RNVP stands for “rien ne va plus” to reflect that any
input that the “player” M1 has given so far is fixed by a
signal of the “croupier” M2.) Of course, we cannot expect
that M2 generates output immediately so that the specific
scheduling influences what it means for M2 to “eventually”
generate output.

This protocol task can be securely realized when inter-
acting with adversaries that are fair with global timeouts.
Intuitively, the machine M2 sends a request to M1 and sets
a timeout within which an answer from an uncorrupted ma-
chine must be received. The machine M1 answers with its
own input and the machine M2 either outputs whatever it
received from M1 or outputs ⊥ if no answer is received before
the time out (in which case M1 must be corrupted).

Theorem 2. There is a real protocol that is as secure
as (RNVP)

p
in the sense of fair reactive simulatability with

global timeouts of delay p(k) := 3.

Formal definitions and a sketch of the proof of this theorem
are given in [3].

However, no protocol exists that is as secure as RNVP in
the sense of fair reactive simulatability (without timeouts)
because the maximal delay times are not known to the un-
corrupted protocol parties.

Theorem 3. Any protocol with the communication struc-
ture and trust model described above is not as secure as
RNVP in the sense of fair reactive simulatability.

A sketch of the proof can be found in [3].Note that the theo-
rem statement would not be stronger if it considered delayed
ideal protocols (RNVP)p, since delay-boxes do not add any
additional capabilities to the simulator if the considered ad-
versaries do not provide timeouts. In fact, the proof sketch
given in the appendix applies also to this seemingly stronger
statement. The above example furthermore serves as a sepa-
rating example for the notions of fair reactive simulatability
with local timeouts on the one hand and fair reactive sim-
ulatability (without timeouts) on the other hand, with very
similar proofs.

5.3 Global vs. Local Timeouts
It is reasonable to ask whether there are protocol tasks

which actually need global timeouts (possibly with respect
to delay boxes). More precisely, do there exist ideal pro-
tocols that can be securely realized when assuming fair ad-
versaries with global timeouts but that cannot be securely
realized in the presence of fair adversaries with local time-
outs? We show that this question can be answered in the
positive.

As an example of a protocol task for which one needs
global delivery guarantees, suppose that a machine M1 wants
to send a k-bit message privately to another machine M4.
Let us assume that both machines are incorruptible and di-
rectly connected via an authenticated but insecure channel
(e.g., a telephone wire). Furthermore, we assume that both
machines can communicate securely only indirectly via two
machines (e.g., servers) M2 and M3. Our goal is to find a
protocol for M1, . . . M4 which achieves the following require-
ments:
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Protocol task CW (Chinese Whisper)

1. If neither M2 nor M3 is corrupted, M4 outputs M1’s
input, and M1’s input stays secret.

2. If M2 and/or M3 is corrupted, M4 outputs either M1’s
input or an abort message; no secrecy is required.

To get a seperating protocol task, we would like to have
information-theoretic security guarantees from the protocol;
in particular this means that we consider statistical indis-
tinguishability for the class of exponentially small functions
below instead of the more common computational indistin-
guishability, cf. Definition 1. Actually, in face of a poly-
nomially bounded adversary, public-key encryption over the
authenticated channel between M1 and M4 would satisfy our
needs. A natural and interesting question is whether there is
also a protocol that distinguishes local and global timeouts
w.r.t. computational security. We currently know of no such
protocol.

An ideal structure reflecting these goals could consist of a
trusted host CW{1,...,4} with code (in the uncorrupted case)
as follows:

Program of CW{1,...,4}

1. If activated with in?-input: set data to that input,
then output 1 on loop!, and inform the adversary by
sending it a 1 via public!. Ignore any further in?-
inputs.

2. If activated with loop?-input (which can only happen
after an in?-input, so data is set), output the value
of data on out! and halt.

??

�

-

�

- -

�

aut14

aut41

sec43sec32sec21

sec12 sec23 sec34

M1 M2 M3 M4

Figure 4: All indicated connections are adversary-
clocked. Each Mi may optionally have time i?, time i!
ports and/or fair . . .?, fair . . .⊳! ports for local connec-
tions.

The service ports are in, out and public. In case of cor-
rupted machines M2 and M3, one would of course modify this
specification to send not only a notification “1”, but instead
the whole message data over public!: one can certainly not
expect a message to be transmitted in a statistically indistin-
guishable way with corrupted intermediate hosts but with-
out pre-distributed secrets. Furthermore, we allow a special
abort message from the adversary which causes CW{1,4} (the
trusted host in the case of corrupted parties M2 and M3) to
output ⊥ instead of the actual message to be transferred.
This models that we do not expect correct message delivery
if M2 and M3 are corrupted; only eventual delivery of either
⊥ or the correct message is mandatory.

The communication situation from our motivation above
can be modeled by a structure structure (M̂∗, S∗) with ma-

chines M̂∗ := {M1, M2, M3, M4} and service ports in and
out. The only allowed connection between the machines are
those depicted in Figure 4. All connections except the two
between M1 and M4 (the telephone wire) are secure. We
stress that we do not fix the actual protocol (i.e., the code)
the machines M1, . . . , M4 run.

Theorem 4. For any protocol with the communication
structure and trust model as described above, it holds that
the protocol is neither statistically as secure as CW in the
sense of fair reactive simulatability, nor is it statistically as
secure as CW in the sense of fair reactive simulatability with
local timeouts. This holds independent of the code of the ma-
chines M1, . . . , M4.

We give a proof sketch in [3].Finally, we investigate the same
protocol task with respect to global timeouts and delayed
buffers. A proof sketch of the theorem is given in [3].

Theorem 5. There is a protocol that is statistically as
secure as (CW)p in the sense of fair reactive simulatability
with global timeouts for a sufficiently large delay polynomial
p.

6. CONCLUSIONS
The notion of simulatability has asserted its position as

one of the fundamental concepts of modern cryptography.
While this notion carefully captures that a distributed pro-
tocol does not behave any worse than an ideal specification,
it however does not capture any form of liveness guarantees,
i.e., that the protocol ensures that something good eventu-
ally happens. In particular, a protocol that does not create
any output or that can be caused to hang indefinitely by
corrupted parties serves as a good implementation of every
ideal specification in the sense of reactive simulatability. In
this paper, we investigated how one can extend the notion
of reactive simulatability so that it additionally comprises
liveness guarantees. The natural solutions and also the one
we chose in this paper is to restrict the master scheduler—
the adversary in our case—to fair scheduling, where notions
of fairness that allow for reasoning about cryptography in a
meaningful way still had to be defined.

To live up to the polynomial runtimes of the parties in
cryptographic systems, we defined fairness as a polynomial-
time variant of the usual fairness definition, i.e., we required
that every message be scheduled within a specific, polyno-
mially bounded number of steps of the adversary instead
of requiring eventual delivery of every message. We further
strengthened the definition by not only requiring that mes-
sages be delivered after some polynomial number of steps
but by requiring that the number of steps, i.e., the maxi-
mum delay of messages, be made known explicitly to the
protocol parties. We called this notion fairness with explicit
timeouts, and we further distinguished variants with local
and global timeouts.

We finally compared the resulting definitions of fair re-
active simulatability, and we provided separating examples
that helped to classify the strengths of the definitions. Some-
what counterintuitively, the examples have shown that pro-
tocols that are secure with respect to one definition might
be insecure with respect to a definition that provides more
comprehensive fairness guarantees. This stems from the fact
that simulatability is defined by comparing a real protocol
with an ideal specification, hence the more guarantees are
given in the ideal model the more requirements have to be
fulfilled by the real protocol.

An interesting research question for future work is the
investigation of other notions of cryptography-suited fair-
ness that reflect less abstract network models. Such notions
could provide additional guarantees that are better suited
for specific applications. Further research might also strive
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for conditions that are sufficient to prove that a protocol is as
secure as an ideal functionality with respect to a given class
of different fairness notions. For example, many protocols
that are secure with respect to fairness with global timeouts,
but do themselves not use timeouts, might be secure both
with respect to fairness with and without timeouts, as well
as possibly with respect to other notions in between.
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B. DELAYED BUFFERS
The problem with global timeouts that is sketched at the

end of Section 4.1 is basically that guarantees given in some
real and ideal structures have to be exactly identical. But
then, the ideal adversary may not have enough freedom to
adapt the response times of the ideal structure according
to the response times of the real one. This can lead to
strange effects as illustrated in the example from Section 4.1.
The problem is of a general nature since we cannot expect
all protocols for the same protocol task to have identical
response times when assuming an identical network quality.

On the other hand, it is a tedious and possibly error-prone
task to explicitly build another specific trusted host (or ideal
structure) for each and every protocol which is to be proven
secure; this would violate the idea of an abstraction from
the considered class of real protocols. However, one can still
start with a completely abstract specification of an ideal
structure that is designed without taking care of, e.g., con-
crete response times of a real protocol. From that, one could
construct a suitably delayed structure in a canonical man-
ner so that the delayed structure can be securely realized by
a specific real protocol. Thus, the only protocol-dependent
parameter would be a specification of concrete extra delay
times used as an adaptation of the initial ideal specification.
If that construction is canonical enough, it will not break
the abstractness of the ideal specification. In resemblance
to the “shell constructs” of [18, 2], we therefore start with a

structure (M̂, S), and replace it with a structure {(M̂p, S)}p

that is parametrized with a function p : N2
0 → N0. Intu-

itively, p(J, k) indicates the factor with which the structure
is delayed, where J is the delivery guarantee given by the
adversary and k the security parameter.

Before going further, we need a tool for delaying connec-
tions. For a function p : N2

0 → N0 and a connection name
n ∈ Σ+, the delay box dbox p n is a machine with the ports
as in Figure 5. The program of dbox p n is as follows:

Program of the delay box dbox p n

1. First, dbox p n waits to get a delivery guarantee
p(J, k) at port fair n?.

2. Then, a counter wait is set to 1, and 1 is output on
time n!.

3. After that, on nonempty time n?-input, wait is incre-
mented, and again 1 is output on time n!.

4. Every clk n?-input c is forwarded to n⊳!; if c = 1,
then wait is reset to 0.

5. If at any time, wait ≥ p(J, k), then wait is reset and
n⊳! is clocked with 1.

- fair n? �time n?

time n!- clk n?

? -

n⊳!

n?n!

Figure 5: A delay box dbox p n for a connec-
tion n. Unless indicated otherwise, all connections
are adversary-clocked.

So essentially, dbox p n serves as a forwarder from clk n?
to the clock port n⊳!. Since clk n? is a simple in-port, an
adversary that is fair with respect to global timeouts is not
required to regularly give input to clk n? (and thus sched-
ule n). Merely, dbox p n itself ensures a regular scheduling
of clk n?. The function p and the delivery guarantee from
the adversary determine how often clk n? is scheduled at
minimum.

Most of the time, it may seem reasonable to demand that p
is polynomially bounded, i.e., that there is a bivariate poly-
nomial q with q(x, y) ≥ p(x, y) for all x, y ∈ N0. Otherwise,
not even a fair adversary with global timeouts guarantees
that the connection n is scheduled regularly (i.e., at least
once in a polynomial number of activations of the adver-
sary). Delay boxes now allow for defining delayed structures:

Definition 7 (Delayed structures). Let (M̂, S) be
a structure and p : N2

0 → N0 be a function. Then the p-
delayed structure (M̂p, S) is obtained by adding to M̂ all
machines dbox p n for which n ∈ Σ+ begins with delay , and
n? or n! but not n⊳! is a port of M̂ .

So essentially, delay . . . connections enable the adversary to
delay messages (polynomially) longer than it would be pos-
sible with a regular buffer. Loosely speaking, an adversary
that is fair with global timeouts may schedule delay . . . con-
nections with delay p(J, k).

We only delay connections that are explicitly labeled as
delay . . . in order to minimize the modification of the orig-
inal structure. Note that when designing a protocol using
a delayed trusted host we can either design the protocol
without respect to the delay parameter; in that case the
guarantees given on the fair . . .? ports are useless for deriv-
ing delays of that trusted host. Or we can write the protocol
in dependence of the concrete delay. Then a concrete real-
ization of a delayed variant of the trusted host would imply
a concrete delay polynomial, and we would know how to
instantiate the larger protocol to allow for composition.
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